Difference between revisions of "Listeria monocytogenes (Stillbirths): Dose Response Models"
m |
m (Protected "Listeria monocytogenes (Stillbirths): Dose Response Models" ([edit=sysop] (indefinite) [move=sysop] (indefinite))) |
||
(16 intermediate revisions by 4 users not shown) | |||
Line 6: | Line 6: | ||
==='''General overview of ''Listeria monocytogenes'' '''=== | ==='''General overview of ''Listeria monocytogenes'' '''=== | ||
− | ''Listeria monocytogenes'' is a | + | ''Listeria monocytogenes'' is a food-borne pathogen responsible for the illness listeriosis. This disease is especially severe for susceptible people, including fetuses and immunocompromised individuals (Smith, Takeuchi et al. 2008). |
− | |||
− | |||
+ | http://www.cdc.gov/listeria/ | ||
Line 18: | Line 17: | ||
==='''Summary Data'''=== | ==='''Summary Data'''=== | ||
− | Smith et al.(2008) studied dose-response model for ''Listeria monocytogenes'' | + | Smith et al.(2008) studied dose-response model for ''Listeria monocytogenes'' induced stillbirths in nonhuman primates (Smith, Takeuchi et al. 2008) . Thirty-three pregnant rhesus monkeys (''Macaca mulatta'') were identified at 30 gestation days (gd) and ''L. monocytogenes'' was administered by nasogastric intubation. Animals were observed daily for changes in behavior or activity or signs of illness such as diarrhea. Similarly, Williams et al ( 2007 and 2009) explored fetal mortality in guinea pigs after oral exposure (Williams, Irvin et al. 2007; Williams, Castleman et al. 2009). Timed-pregnant guinea pigs were inoculated ''L. monocytogenes'' with whipping cream and the doses ranges from 10<sup>4</sup> CFU to 10<sup>8</sup> CFU. The animals were sacrificed on gestation day. |
{{DRSummaryTableStart|agent=''Listeria monocytogenes''}} | {{DRSummaryTableStart|agent=''Listeria monocytogenes''}} | ||
+ | {{DRSummaryTablePreferredModeltworefs|expID= 289,290 |refer1=Smith|reference1=Smith, M. A., K. Takeuchi, et al. (2008). "Dose-Response Model for Listeria monocytogenes-Induced Stillbirths in Nonhuman Primates." Infection and Immunity 76(2): 726-731|refer2=Williams2007|reference2=Williams, D., E. A. Irvin, et al. (2007)."Dose-Response of Listeria monocytogenes after Oral Exposure in Pregnant Guinea Pigs." Journal of Food Protection 70(5): 1122-1128|host=pooled |agentStrain= |route= oral |nDoses= 13 |doseUnits= CFU |response= stillbirths |bestFitModel=beta-Poisson|parameters=α = 4.22E-02 , N<sub>50</sub> = 1.78E+09 |N50= 1.78E+09 }} | ||
+ | {{DRSummaryTableNonpreferredModel|expID= 289 |refer=Smith|reference=Smith, M. A., K. Takeuchi, et al. (2008). "Dose-Response Model for Listeria monocytogenes-Induced Stillbirths in Nonhuman Primates." Infection and Immunity 76(2): 726-731|host= rhesus monkeys |agentStrain= |route= oral |nDoses= 8 |doseUnits= CFU |response= stillbirths |bestFitModel=beta-Poisson|parameters=α = 4E-02 , N<sub>50</sub> = 8.26E+08 |N50= 8.26E+08 }} | ||
+ | {{DRSummaryTableNonpreferredModel|expID= 290 |refer=Williams2007|reference=Williams, D., E. A. Irvin, et al. (2007)."Dose-Response of Listeria monocytogenes after Oral Exposure in Pregnant Guinea Pigs." Journal of Food Protection 70(5): 1122-1128|host= guinea pig |agentStrain= |route= oral |nDoses= 5 |doseUnits= CFU |response= fetal mortality |bestFitModel=beta-Poisson|parameters=α = 9.36E-02 , N<sub>50</sub> = 4.67E+07 |N50= 4.67E+07 }} | ||
+ | {{DRSummaryTableEnd}} | ||
− | |||
− | |||
− | |||
+ | ==<sup>*</sup>Recommended Model== | ||
− | + | It is recommended that pooled model of experiment 289 and 290 pooled should be used as the best dose response model. More data means better fit. | |
+ | [[File:Exponential and betapoisson model.jpg|thumb|none|550px]] | ||
− | + | ---- | |
− | + | ==='''Optimization Output for pooled data (experiment 289 and 290)'''=== | |
− | = | + | {{DRExperimentDataTable13norefs|title=Rhesus monkey/''Listeria monocytogenes''|pos=Stillbirths|neg=Not stillbirths|d1=316|p1=0|n1=1|t1=1|d2=1580|p2=2|n2=6|t2=8|d3=1E+04|p3=0|n3=4|t3=4|d4=2E+04|p4=0|n4=3|t4=3|d5=1E+05|p5=2|n5=9|t5=11|d6=126000|p6=1|n6=4|t6=5|d7=1E+06|p7=2|n7=7|t7=9|d8=1580000|p8=2|n8=4|t8=6|d9=1E+07|p9=3|n9=6|t9=9|d10=1.26E+07|p10=2|n10=3|t10=5|d11=1E+08|p11=3|n11=1|t11=4|d12=1.26E+08|p12=2|n12=2|t12=4|d13=3.98E+10|p13=1|n13=0|t13=1}} |
− | |||
+ | {{DRFit|title=Goodness of fit and model selection|devE=71.8|devB=7.88|delta=63.9|DFE=12|DFB=11|X2bPbetter=3.84|pbPbetter=1.33e-15|X2GOFe=21|pGOFe=1.49e-10|X2GOFb=19.7|pGOFb=0.724|interpretation=Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.}} | ||
− | {{ | + | {{DRConfidenceBetaPoisson|title=Optimized parameters for the beta-Poisson model, from 500 bootstrap iterations|MLEa=4.22E-02|p5a=1.14E-02|p25a=1.54E-02|p50a=1.78E-02|p950a=1.26E-01|p975a=1.51E-01|p995a=2.71E-01|MLEN=1.78E+09|p5N=1.74E+06|p25N=4.42E+06|p50N=7.04E+06|p950N=2.28E+15|p975N=8.63E+16|p995N=8.36E+20}} |
− | |||
+ | [[File:BPscatter ID289 290.png|thumb|left|500px|'''Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.''']][[File:BPmodel ID289 290.png|thumb|none|500px|'''beta Poisson model plot, with confidence bounds around optimized model''']]<br> | ||
+ | ---- | ||
− | |||
+ | ==='''Optimization Output for experiment 289'''=== | ||
− | --- | + | {{DRExperimentDataTable8|title=Rhesus monkey/''Listeria monocytogenes''|refer=Smith|reference=Smith, M. A., K. Takeuchi, et al. (2008). "Dose-Response Model for Listeria monocytogenes-Induced Stillbirths in Nonhuman Primates." Infection and Immunity 76(2): 726-731|host= rhesus monkeys|pos=Stillbirths|neg=Not stillbirths|d1=316|p1=0|n1=1|t1=1|d2=1580|p2=2|n2=6|t2=8|d3=2E+04|p3=0|n3=3|t3=3|d4=126000|p4=1|n4=4|t4=5|d5=1580000|p5=2|n5=4|t5=6|d6=1.26E+07|p6=2|n6=3|t6=5|d7=1.26E+08|p7=2|n7=2|t7=4|d8=3.98E+10|p8=1|n8=0|t8=1}} |
− | |||
− | {{ | + | {{DRFit|title=Goodness of fit and model selection|devE=51.4|devB=3.68|delta=47.7|DFE=7|DFB=6|X2bPbetter=3.84|pbPbetter=4.95e-12|X2GOFe=14.1|pGOFe=7.71e-09|X2GOFb=12.6|pGOFb=0.72|interpretation=Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.}} |
+ | {{DRConfidenceBetaPoisson|title=Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations|MLEa=4E-02|p5a=9.86E-04|p25a=9.94E-04|p50a=1.02E-02|p950a=1.22E-01|p975a=1.96E-01|p995a=3.05E-01|MLEN=8.26E+08|p5N=1.94E+03|p25N=4.54E+04|p50N=5.30E+05|p950N=8.90E+18|p975N=6.18E+22|p995N=4.86E+65}} | ||
− | |||
− | |||
+ | [[File:BPscatter ID289.png|thumb|left|500px|'''Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.''']][[File:BPmodel ID289.png|thumb|none|500px|'''beta Poisson model plot, with confidence bounds around optimized model''']]<br> | ||
− | + | ---- | |
+ | ==='''Optimization Output for experiment 290'''=== | ||
− | |||
− | = | + | {{DRExperimentDataTable5|title=Guinea pig/''Listeria monocytogenes''|refer=Williams2007|reference=Williams, D., E. A. Irvin, et al. (2007)."Dose-Response of Listeria monocytogenes after Oral Exposure in Pregnant Guinea Pigs." Journal of Food Protection 70(5): 1122-1128|host= guinea pig |pos=Fetal mortality|neg=Not fetal mortality|d1=1E+04|p1=0|n1=4|t1=4|d2=1E+05|p2=2|n2=9|t2=11|d3=1E+06|p3=2|n3=7|t3=9|d4=1E+07|p4=3|n4=6|t4=9|d5=1E+08|p5=3|n5=1|t5=4}} |
− | |||
+ | {{DRFit|title=Goodness of fit and model selection|devE=19.3|devB=1.72|delta=17.6|DFE=4|DFB=3|X2bPbetter=3.84|pbPbetter=2.71e-05|X2GOFe=9.49|pGOFe=0.000677|X2GOFb=7.81|pGOFb=0.632|interpretation=Beta-Poisson fits better than exponential; cannot reject good fit for beta-Poisson.}} | ||
− | |||
+ | {{DRConfidenceBetaPoisson|title=Optimized parameters for the beta-Poisson model, from 10000 bootstrap iterations|MLEa=9.36E-02|p5a=1.19E-02|p25a=2.03E-02|p50a=2.95E-02|p950a=1.10E+00|p975a=1.02E+02|p995a=8.41E+02|MLEN=4.67E+07|p5N=9.56E+05|p25N=2.12E+06|p50N=3.23E+06|p950N=8.13E+11|p975N=4.28E+14|p995N=2.83E+23}} | ||
− | |||
− | |||
+ | [[File:BPscatter ID290.png|thumb|left|500px|'''Parameter scatter plot for beta Poisson model ellipses signify the 0.9, 0.95 and 0.99 confidence of the parameters.''']][[File:BPmodel ID290.png|thumb|none|500px|'''beta Poisson model plot, with confidence bounds around optimized model''']]<br> | ||
---- | ---- | ||
− | |||
− | |||
==='''References'''=== | ==='''References'''=== | ||
Line 100: | Line 99: | ||
<references /> | <references /> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Williams D, Castleman J, et al. (2009) Risk of Fetal Mortality After Exposure to Listeria monocytogenes Based on Dose-Response Data from Pregnant Guinea Pigs and Primates. Risk Analysis 29(11): 1495-1505. | Williams D, Castleman J, et al. (2009) Risk of Fetal Mortality After Exposure to Listeria monocytogenes Based on Dose-Response Data from Pregnant Guinea Pigs and Primates. Risk Analysis 29(11): 1495-1505. | ||
− | + | ||
[[Category:Completed Dose Response Models: Bacteria]][[Category:Dose Response Model]][[Category:Pseudomonas aeruginosa]] | [[Category:Completed Dose Response Models: Bacteria]][[Category:Dose Response Model]][[Category:Pseudomonas aeruginosa]] | ||
<br> | <br> | ||
<br> | <br> |
Latest revision as of 14:41, 15 February 2013
Listeria monocytogenes (Stillbirths in animals)
General overview of Listeria monocytogenes
Listeria monocytogenes is a food-borne pathogen responsible for the illness listeriosis. This disease is especially severe for susceptible people, including fetuses and immunocompromised individuals (Smith, Takeuchi et al. 2008).
Summary Data
Smith et al.(2008) studied dose-response model for Listeria monocytogenes induced stillbirths in nonhuman primates (Smith, Takeuchi et al. 2008) . Thirty-three pregnant rhesus monkeys (Macaca mulatta) were identified at 30 gestation days (gd) and L. monocytogenes was administered by nasogastric intubation. Animals were observed daily for changes in behavior or activity or signs of illness such as diarrhea. Similarly, Williams et al ( 2007 and 2009) explored fetal mortality in guinea pigs after oral exposure (Williams, Irvin et al. 2007; Williams, Castleman et al. 2009). Timed-pregnant guinea pigs were inoculated L. monocytogenes with whipping cream and the doses ranges from 104 CFU to 108 CFU. The animals were sacrificed on gestation day.
|
*Recommended Model
It is recommended that pooled model of experiment 289 and 290 pooled should be used as the best dose response model. More data means better fit.
Optimization Output for pooled data (experiment 289 and 290)
|
|
|
Optimization Output for experiment 289
|
|
|
Optimization Output for experiment 290
|
|
|
References
- ↑ 1.0 1.1 1.2 Smith, M. A., K. Takeuchi, et al. (2008). "Dose-Response Model for Listeria monocytogenes-Induced Stillbirths in Nonhuman Primates." Infection and Immunity 76(2): 726-731
- ↑ 2.0 2.1 2.2 Williams, D., E. A. Irvin, et al. (2007)."Dose-Response of Listeria monocytogenes after Oral Exposure in Pregnant Guinea Pigs." Journal of Food Protection 70(5): 1122-1128
Williams D, Castleman J, et al. (2009) Risk of Fetal Mortality After Exposure to Listeria monocytogenes Based on Dose-Response Data from Pregnant Guinea Pigs and Primates. Risk Analysis 29(11): 1495-1505.