Difference between revisions of "Drinking Water"

From QMRAwiki
Jump to: navigation, search
(Filtration)
(Chlorine)
 
(232 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== General Overview ==
+
== Introduction ==
 +
The Drinking Water page is intended to serve as a means of providing the relevant information to the users who wish to perform a [[Quantitative Microbial Risk Assessment|QMRA]] on drinking water
  
== Source Occurrence Concentration ==
+
== Tap Water Consumption ==
=== Sewage Intrusion ===
+
 
=== Runoff Contamination ===
+
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ '''[http://wiki.camra.msu.edu/index.php?title=File:Estimated_direct_and_indirect_community_water_ingestion.xls Table 1: Estimated Combined Direct<sup>a</sup> & Indirect<sup>b</sup> Community Water Ingestion] via [http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=209866 EPA Exposure Factors Handbook]
 +
| '''Population''' || '''Age''' || '''Number of Subjects''' || '''Mean (90% CI) <sup>c</sup> (mL/person/day)''' || '''95th (90% BI) <sup>d</sup> (mL/person/day)'''
 +
|-
 +
| rowspan = "14" | United States People || Birth to <1 month || 91 || 184 (117-251) || 839 (638-859)
 +
|-
 +
| 1 to <3 months || 253 || 227 (180-274) || 896 (878-1022)
 +
|-
 +
| 3 to <6 months || 428 || 362 (322-401) || 1056 (1043-1170)
 +
|-
 +
| 6 to <12 months || 714 || 360 (328-392) || 1055 (1008-1254)
 +
|-
 +
| 1 to <2 years || 1040 || 271 (253-289) || 837 (754-925)
 +
|-
 +
| 2 to <3 years || 1056 || 317 (298-337) || 877 (828-939)
 +
|-
 +
| 3 to <6 years || 4391 || 380 (365-394) || 1078 (1053-1109)
 +
|-
 +
| 6 to <11 years || 1670 || 447 (417-476) || 1235 (1148-1317)
 +
|-
 +
| 11 to <16 years || 1005 || 606 (562-651) || 1727 (1615-1780)
 +
|-
 +
| 16 to <18 years || 363 || 731 (633-828) || 1983 (1843-2128)
 +
|-
 +
| 18 to <21 years || 389 || 826 (746-906) || 2540 (1908-2934)
 +
|-
 +
| >21 years || 9207 || 1104 (1074-1134) || 2811 (2732-2924)
 +
|-
 +
| >65 years || 2170 || 1127 (1073-1180) || 2551 (2500-2637)
 +
|-
 +
| All ages || 20,607 || 926 (903-949) || 2544 (2500-2584)
 +
|}
 +
|}
 +
<sup>a</sup> Direct water: water ingested directly as a beverage. <br />
 +
<sup>b</sup> Indirect water: water added in preparation of food or beverages. <br />
 +
<sup>c</sup> 90% CI: 90% confidence interval about the estimated means. <br />
 +
<sup>d</sup> 90% BI: 90% bootstrap interval about the estimated percentiles. <br />
 +
Source of data: 1994-1996 and 1998 USDA Continuing Survey of Food Intakes by Individuals (CSFII). <br />
 +
'''(Kahn H.D. and Stralka K., 2009)''' <br />
 +
 
 +
== Water Distribution Fate and Transport ==
  
 
== Treatment ==
 
== Treatment ==
 
=== Engineering Controls ===
 
=== Engineering Controls ===
=== Chlorine ===
+
=== Disinfection ===
 +
====Chlorine ====
 +
 
 +
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ '''[http://wiki.camra.msu.edu/index.php?title=File:Free_clorine.xls <big>Table 1: Inactivation of Health-related Microbes in Water by Free Chlorine</big>]'''
 +
| style="background-color:#cccccc;" |'''Microbe'''
 +
| style="background-color:#cccccc;" |'''Water'''
 +
| style="background-color:#cccccc;" |'''Cl<sub>2</sub> Residual (mg/l)'''
 +
| style="background-color:#cccccc;" |'''Temp(&deg;C)'''
 +
| style="background-color:#cccccc;" |'''Time(min)'''
 +
| style="background-color:#cccccc;" |'''Reduction(%)'''
 +
| style="background-color:#cccccc;" |'''Estimate Ct<sup>a</sup>'''
 +
| style="background-color:#cccccc;" |'''References'''
 +
|-
 +
| colspan = "8" | '''Bacteria'''
 +
|-
 +
| colspan = "8" | pH = 7.0
 +
|-
 +
| ''E. coli''|| BDF<sup>b</sup>, < 7um<sup>c</sup>||0.5||5||30||ND<sup>d</sup>||0.9||Berman et al, 1988
 +
|-
 +
| ''E. coli''|| BDF, > 7um<sup>e</sup>||0.5||5||30||ND||2.7||Berman et al, 1988
 +
|-
 +
| ''M. chelonei''||BDF||0.3||25||60||40||>>60||Carson et al, 1978
 +
|-
 +
| ''M. chelonei''|| ||0.7||25||60||99.95||46||Carson et al, 1978
 +
|-
 +
| ''M. chelonei''||BDF||1||?||60||96||ca.80||Pelletier and Du Moulin, 1987
 +
|-
 +
| ''M. fortuitum''||BDF||0.15||?||60||0||>720||Pelletier and Du Moulin, 1987
 +
|-
 +
| ''M. fortuitum''||BDF||1||?||30||99.4||ca.28||Pelletier and Du Moulin, 1987
 +
|-
 +
| ''M. intracellulare||BDF||0.15||?||60||70||>>480||Pelletier and Du Moulin, 1987
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| ''E. coli''||BDF||0.1||23||3.5||90||0.6||Hass et al, 1986
 +
|-
 +
| ''E. coli''||BDF 0.1M KNO<sub>3</sub>||0.1||23||0.8||90||0.15||Hass et al, 1986
 +
|-
 +
| style="background-color:#cccccc;" |'''Microbe'''
 +
| style="background-color:#cccccc;" |'''Water'''
 +
| style="background-color:#cccccc;" |'''Cl<sub>2</sub> Residual (mg/l)'''
 +
| style="background-color:#cccccc;" |'''Temp(&deg;C)'''
 +
| style="background-color:#cccccc;" |'''Time(min)'''
 +
| style="background-color:#cccccc;" |'''Reduction(%)'''
 +
| style="background-color:#cccccc;" |'''Estimate Ct<sup>a</sup>'''
 +
| style="background-color:#cccccc;" |'''References'''
 +
|-
 +
| colspan = "8" | '''Viruses'''
 +
|-
 +
| colspan = "8" | pH <= 7.0
 +
|-
 +
| Parvo- H-1||PBS||0.2||20||6||99.9||0.53||Churn et al,1984
 +
|-
 +
| Parvo- H-1||PBS||0.2||10||11||99.9||0.85||Churn et al,1984
 +
|-
 +
| ''Hepatitis A''||BDF||0.42-0.06||25||0.7||99.99||ca. 3.0||Grabow et al, 1983
 +
|-
 +
| ''Hepatitis A''||BDF||0.5||5||6.5||99.99||ca. 1.8||Sobsey et al, 1988
 +
|-
 +
| Coliphage MS2||BDF||0.5||5||1.2||99.99||ca. 0.25||Sobsey et al, 1988
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| SA11, disp.||BDF||ca. 0.5||5||1.1-1.65||99||0.63||Berman and Hoff, 1984
 +
|-
 +
| SA11, cell ass. ||BDF||ca. 0.5||5||2.4-4.4||99||1.8||Berman and Hoff, 1984
 +
|-
 +
| Human rota||effluent||1.1||15||15||40||>>15||Harekah and Butler, 1984
 +
|-
 +
| Human rota||effluent||2.2||15||10||60||>>15||Harekah and Butler, 1984
 +
|-
 +
| Rota, SA11||BDF||0.1||4||0.5||99.9||0.03||Vaughn et al, 1986
 +
|-
 +
| Rota, Wa||BDF||0.1||4||0.65||99.9||0.03||Vaughn et al, 1986
 +
|-
 +
| Rota, SA11||BDF||0.4-0.28||25||1.1||99.99||ca. 4.0||Grabow et al, 1983
 +
|-
 +
| ''Hepatitis A''||BDF||0.4-0.28||25||2.5||99.99||ca. 5.5||Grabow et al, 1983
 +
|-
 +
| ''Hepatitis A''||BDF||0.5||5||49.6||99.99||ca. 12.3||Sobsey et al, 1988
 +
|-
 +
| Coliphage MS2||BDF||0.5||5||26.5||99.99||ca. 6.9||Sobsey et al, 1988
 +
|-
 +
| style="background-color:#cccccc;" |'''Microbe'''
 +
| style="background-color:#cccccc;" |'''Water'''
 +
| style="background-color:#cccccc;" |'''Cl<sub>2</sub> Residual (mg/l)'''
 +
| style="background-color:#cccccc;" |'''Temp(&deg;C)'''
 +
| style="background-color:#cccccc;" |'''Time(min)'''
 +
| style="background-color:#cccccc;" |'''Reduction(%)'''
 +
| style="background-color:#cccccc;" |'''Estimate Ct<sup>a</sup>'''
 +
| style="background-color:#cccccc;" |'''References'''
 +
|-
 +
| colspan= "8" | '''Protozoan Cysts'''
 +
|-
 +
| colspan = "8" | pH <= 7.0
 +
|-
 +
| ''G. lamblia''||BDF||1.0-4.0||5||3.0-32||90||90-170||Jarroll et al, 1981
 +
|-
 +
| ''G. lamblia''||BDF||1.5||25||47||99||<15||Jarroll et al, 1981
 +
|-
 +
| ''G. lamblia''||BDF||2.5||5||19-26||90||ca. 120||Rice et al, 1982
 +
|-
 +
| ''G. lamblia''||BDF||0.2-3.0||5|| || 99||54-87||Hibler et al, 1987
 +
|-
 +
| ''G. lamblia''||BDF||0.2-3.0||5|| ||99||83-133||Hibler et al, 1987
 +
|-
 +
| ''G. muris''||BDF||2.5||5||30||90||>150||Hibler et al, 1987
 +
|-
 +
| ''G. muris''||BDF||23.8-78.5 <sup>f</sup>||5||5.7-42.6||99||449-1012||Leahey et al, 1987
 +
|-
 +
| ''G. muris''||BDF||2.8-7.1 <sup>g</sup>||25||3.6-16||99||25.5-44.8||Leahey et al, 1987
 +
|-
 +
| ''G. muris''||BDF||4.4||25||16.3||99||71||Leahey et al, 1987
 +
|-
 +
| ''N. gruberi''||BDF||2.64||25||2.8||99||7.3||Rubin et al, 1983
 +
|-
 +
| ''N. gruberi''||BDF||2.2||25||5.2||99||11.4||Rubin et al, 1983
 +
|-
 +
| ''Cryptosporidium''||gut homog. in PBS||30,000 <sup>f</sup>||4||18 hr||<95||>>18 hrs||Campbell et al, 1982
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| ''G. lamblia''||BDF||0.2-3.0||5|| ||99||119-192||Hibler et al, 1987
 +
|-
 +
| ''G. muris''||BDF||2.5||5||48||90||>150||Rice et al, 1982
 +
|-
 +
| ''G. muris''||BDF||11.1||25||15.6||99||177||Leahey et al, 1987
 +
|-
 +
| ''Naegleria''(2 species)|| ||0.5-1.0||25||1-3 hr||99.99||12-18||de Jonckheere and van de voorde, 1976
 +
|-
 +
| ''Acanthamoeba''(2 species)||  || 4.0-8.0||25||24 hr||99.99||960-7200||de Jonckheere and van de voorde, 1976
 +
|-
 +
| ''N. gruberi''||BDF||15.4||25||15.4||99||177||Rubin et al, 1983
 +
|}
 +
|}
 +
 
 +
<sup>a</sup>: product of disinfectant concentration (C) in mg/l and contact time (t) in minutes for 99% inactivation <br />
 +
<sup>b</sup>: BDF: buffered demand free <br />
 +
<sup>c</sup>: <7um: with <7um particles <br />
 +
<sup>d</sup>: ND: Not done or no data <br />
 +
<sup>e</sup>: >7um: with >7um particles <br />
 +
<sup>f</sup>: Not to be used for Drinking water due to residual level greater than 2 mg/L as stipulated by EPA <br />
 +
<sup>g</sup>: Not recommended for Drinking water due to residual range being greater than 2 mg/L as stipulated by EPA <br />
 +
('''Sobsey, 1989''')
 +
 
 +
 
 +
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ '''[http://wiki.camra.msu.edu/index.php?title=File:Chloramines.xls <big>Table 2: Inactivation of Health-related Microbes in Water by Chloramines</big>]'''
 +
| style="background-color:#cccccc;" |'''Microbe'''
 +
| style="background-color:#cccccc;" |'''Water'''
 +
| style="background-color:#cccccc;" |'''Cl<sub>2</sub> Residual (mg/l)'''
 +
| style="background-color:#cccccc;" |'''Temp(&deg;C)'''
 +
| style="background-color:#cccccc;" |'''Time(min)'''
 +
| style="background-color:#cccccc;" |'''Reduction(%)'''
 +
| style="background-color:#cccccc;" |'''Estimate Ct<sup>a</sup>'''
 +
| style="background-color:#cccccc;" |'''References'''
 +
|-
 +
| colspan = "8" | '''Bacteria'''
 +
|-
 +
| colspan = "8" | pH <= 7.0
 +
|-
 +
| ''S. typhimurium'' & ''S. sonnei''||1% sewage||0.4-1.5||20||ND<sup>b</sup>||90||8.5||Snead et al, 1980
 +
|-
 +
| ''M. fortuitum''||BDF<sup>c</sup>||3.25||20||50||90||2667||Engelbrecht et al, 1977
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| ''E. coli''||BDF||1.9-2.2||5||51-59||99||113||Scarpino, 1984
 +
|-
 +
| ''S. typhimurium'' & ''S. sonnei''||1% sewage||0.4-1.5||20||ND||90||40||Snead et al, 1980
 +
|-
 +
| colspan = "8" | '''Viruses'''
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| Polio 1||BDF||5-22||5||170||99||1420||Scarpino, 1984
 +
|-
 +
| Polio 1||1&deg; effl.||1-10||25||60-308||99||ca. 345||Fujioka et al, 1983
 +
|-
 +
| Hepatitis A||BDF||10||5||117||99.99||ca. 592||Sobsey et al, 1988
 +
|-
 +
| Coliphage MS2||BDF||10||5||>>60|| ||ca. 2100||Sobsey et al, 1988
 +
|-
 +
| Rotavirus SA11 dispersed ||BDF||10||5||366-402||99||4034||Berman and Hoff, 1984
 +
|-
 +
| Rotavirus SA11 cell-assoc. ||BDF||10||5||570-636||99||6124||Berman and Hoff, 1984
 +
|-
 +
| colspan = "8" | '''Protozoan Cysts'''
 +
|-
 +
| colspan = "8" | pH <= 7.0
 +
|-
 +
| ''G. muris''||BDF||1.5-2.6||3||188-296||99||430-580||Meyer, 1982
 +
|-
 +
| ''G. muris'' ||BDF||6.35||5||220||99||ca. 1400||Rubin, 1988
 +
|-
 +
| ''G. muris''||BDF||1.5-30||15|| ||99||ca. 1000||Rubin, 1988
 +
|-
 +
| colspan = "8" | pH > 7.0
 +
|-
 +
| ''G. muris''||BDF||1.5-30||15|| ||99||ca. 600||Rubin, 1988
 +
|}
 +
|}
 +
<sup>a</sup>: product of disinfectant concentration (C) in mg/l and contact time (t) in minutes for 99% inactivation <br />
 +
<sup>b</sup>:ND: Not done or no data <br />
 +
<sup>c</sup>: BDF: buffered demand free <br />
 +
('''Sobsey, 1989''')
  
Log10 reduction value: 1 (baseline) to 3 (maximum) for protozoa, 3 (baseline) to 6 (maximum) for bacteria and viruses.
+
==== UV ====
  
 
=== Filtration ===
 
=== Filtration ===
  
porous ceramic filtration - Log10 reduction value: 4 (baseline) to 6 (maximum) for protozoa, 2 (baseline) to 6 (maximum) for bacteria, 0.5 (baseline) to 4 (maximum) for viruses (Sobsey et al. 2008).
 
  
biosand filtration - Log10 reduction value: 2 (baseline) to 4 (maximum) for protozoa, 1 (baseline) to 3 (maximum) for bacteria, 0.5 (baseline) to 3 (maximum) for viruses (Sobsey et al. 2008).
+
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ [http://wiki.camra.msu.edu/index.php?title=File:Reduction_value_by_filtration_8_17.xls '''<big>Table 3. Reduction Value (log<sub>10</sub>) by Filtration</big>''']
 +
| rowspan = "2" | '''Microbe'''
 +
| colspan = "2" | '''Reduction Value (log10)'''
 +
| rowspan = "2" | '''Reference'''
 +
|-
 +
| '''Minimum <sup>a</sup>'''
 +
| '''Maximum <sup>b</sup>'''
 +
|-
 +
| colspan = "4" | '''Porous ceramic filtration'''
 +
|-
 +
| Total Coliform || 2|| || Lantagne 2001
 +
|-
 +
| ''E. coli''||2|| ||Brown 2007
 +
|-
 +
| ''Klebsiella terrigena''|| ||6||Sobsey 2002
 +
|-
 +
| Polioviruses||0.5||4||Sobsey 2002
 +
|-
 +
| Rotaviruses ||0.5||4||Sobsey 2002
 +
|-
 +
| ''Cryptosporidium parvum''||4||6||Lantagne 2001
 +
|-
 +
| ''Giardia lamblia''||4||6||Lantagne 2001
 +
|-
 +
| colspan = "4" | '''Biosand filtration'''
 +
|-
 +
| ''E. coli'' || 1||3||Hijnen 2004, Elliott 2008
 +
|-
 +
| Clostridia || 1||3||Hijnen 2004, Elliott 2008
 +
|-
 +
| Echovirus 12 || 0.5||3||Hijnen 2004, Elliott 2008
 +
|-
 +
| MS2-bacteriophages||0.5||1.5||Hijnen 2004, Elliott 2008
 +
|-
 +
| PRD1-bacteriophages||0.5||2||Hijnen 2004, Elliott 2008
 +
|-
 +
| ''Cryptosporidium parvum''||2||5||Hijnen 2004
 +
|-
 +
| ''Giardia lamblia''||2||5||Hijnen 2004
 +
|}
 +
|}
 +
<sup>a</sup>: expected in actual field practice when done by relatively unskilled persons who apply the treatment to waters of varying quality and where there are minimum facilities or supporting instruments; <br />
 +
<sup>b</sup>: by skilled operators who are supported with instrumentation and other tools to maintain the highest level of performance in waters of predictable and unchanging quality. <br />
 +
 
 +
== Pathogen Occurrence in Water Sources ==
 +
=== Sewage ===
 +
=== Surface Water ===
 +
=== Ground Water ===
 +
 
 +
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ [http://wiki.camra.msu.edu/index.php?title=File:Pathogen_in_groundwater.xls '''<big>Table 1. Pathogens in Groundwater</big>''']
 +
| '''Pathogen''' || '''Location''' || '''Presence/Absence''' || '''Concentration <sup>a</sup>''' || '''Note''' || '''References'''
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (BGM <sup>b</sup>) || Missoula, MT <br /> Eight Wells from Unconfined Aquifer|| n = 7 <br /> % positive = 0 || Min: < 0.67 <br /> Max: < 4.05 <br /> Avg: < 1.74 <br /> Std: < 1.43 <br /> Unit: MPN/1000L || Water samples from wells beneath and adjacent to the <br />drainfield of the septic tanks were collected. <br /> Please see the virus data in septic tanks in [http://wiki.camra.msu.edu/index.php?title=File:Virus_in_septic_tank_table_Y.xls Table Y]. || [http://info.ngwa.org/GWOL/pdf/982564301.PDF DeBorde et al, 1998]
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (BGM <sup>b</sup>) || Nottingham and Birmingham, UK <br /> Two Sandstone Aquifers || n = 107 <br /> % positive = 10 || Detection limit: 1000 <br /> Min: 5000 <br /> Max: 10,000 <br /> Avg: 1382 <br /> Std: 1670 <br /> Unit: PFU/1000L || Only two quantifiable samples were found. || [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V73-4712HF7-2-C&_cdi=5831&_user=1111158&_pii=S0043135402002804&_origin=&_coverDate=01%2F31%2F2003&_sk=999629997&view=c&wchp=dGLbVzz-zSkzk&md5=2ccec28fd8dca98fa9178af334d52ff7&ie=/sdarticle.pdf Powell et al, 2003]
 +
|-
 +
| Six virus groups <sup>c</sup> <br /> (qRT-PCR) || Madison, WI <br /> Six municipal water-supply wells from sandstone aquifer || n = 147 <br /> % positive = 47 || Max: 6.27 <br /> Avg: 0.65 <br /> Unit: Gene Copies/L || Virus levels in Lake Mendota and sewage influent were also analyzed.  || [http://wisconsingeologicalsurvey.org/wofrs/WOFR2010-04a.pdf Bradbury et al, 2010]
 +
|-
 +
| Five virus groups <sup>d</sup> <br /> (RT-PCR) || La Crosse, WI <br /> Six drinking-water supply wells || n = 48 <br /> % positive = 50 ||    || Occurrence of virus in river samples was also analyzed.  || [http://aem.asm.org/cgi/reprint/70/10/5937 Borchardt et al, 2004]
 +
|-
 +
| Five virus groups <sup>d</sup> <br /> (RT-PCR) || Madison, WI <br /> Three wells from confined bedrock aquifer || n = 30 <br /> % positive = 23 ||  || One well is located in a suburban area from which no positive sample was found.<br /> The other two wells located in highly urbanized areas from which 7 positives were found. || [http://diyhpl.us/~bryan/papers2/bio/Human%20enteric%20viruses%20in%20groundwater%20from%20a%20confined%20bedrock%20aquifer.pdf Borchardt et al, 2007]
 +
|-
 +
| Five virus groups <sup>d</sup> <br /> (RT-PCR) || Wisconsin <br /> Fifty private household wells || n = 194 <br /> % positive = 2.6 ||  || All samples were negative for culturable viruses.  || [http://aem.asm.org/cgi/reprint/69/2/1172 Borchardt et al, 2003]
 +
|-
 +
| Four virus groups <sup>e</sup> <br /> (RT-PCR) || United States <br /> || n = 448 <br /> % positive = 31.5 ||  || rowspan = "2" | Groundwater were collected from 448 sites in 35 states in US. <br /> % positive for each specific virus was also reported.  || rowspan = "2" | [http://wet.asu.edu/JAWWA.pdf Abbaszadegan et al, 2003]
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (BGM <sup>b</sup>) || United States <br /> || n = 442 <br /> % positive = 4.8 || Min: 0.9 <br /> Max: 18.6 <br /> Unit: MPN/1000L
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (MA-104) || Quebec, Canada <br /> Twelve municipalities || n = 113 <br /> % positive = 8 || Min: 3 <br /> Max: 589 <br /> Unit: MPN/1000L || Municipalities were divided into 3 groups: group A with no known microbial contamination; <br /> group B with groundwater sporadically contaminated by total coliform; <br /> group C were historic and continuous contaminated by total coliforms and fecal coliforms. <br /> No virus was found in A.  Virus was found in one sample in B and 8 samples in C. || [http://www.nrcresearchpress.com/doi/pdf/10.1139/W07-034 Locas et al, 2007]
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (BGM <sup>b</sup>) || Quebec, Ontario, and Alberta of Canada <br /> 25 sites || n = 130 <br /> % positive = 0.8 || 10 MPN/1000L || One sample was positive in Quebec site. <br /> None was positive in other two sites. || [http://www.nrcresearchpress.com/doi/pdf/10.1139/W08-028 Locas et al, 2008]
 +
|-
 +
| Total Cultural Enteric Viruses <br /> (BGM <sup>b</sup>) || Long Island <br /> Three wells || n = 30 <br /> % positive = 20 || Min: 343 <br /> Max: 2800 <br /> Avg: 1030 <br /> Std: 898 <br /> Unit: PFU/1000L || The recovery of viruses from groundwater established the ability of virus particles to penetrate these shallower basins (18 to 34 feet) from wastewater treatment plant. || [http://aem.asm.org/cgi/reprint/36/1/47 Vaughn et al, 1978]
 +
|}
 +
|}
 +
<sup>a</sup>: All averages included negative samples reported at detection limit <br />
 +
<sup>b</sup>: Cell culture line <br />
 +
<sup>c</sup>: Enteroviruses, adenoviruses, rotavirus, hepatitis A virus (HAV), and norovirus genogroups I and II <br />
 +
<sup>d</sup>: Enteroviruses, rotavirus, hepatitis A virus, and norovirus genogroups I and II <br />
 +
<sup>e</sup>: Enteroviruses, rotavirus, hepatitis A virus, and norwalk virus <br />
 +
 
 +
 
 +
 
 +
{|
 +
| STYLE="vertical-align: top; text-align: center"|
 +
{| border = "1"
 +
|+ '''[http://wiki.camra.msu.edu/index.php?title=File:Decay_rates_of_viruses_in_groundwater.xls <big>Table 2. Decay rates of viruses in groundwater</big>]'''
 +
| '''Viruses'''
 +
| '''Location'''
 +
| '''Temperature &deg;C'''
 +
| '''Decay rate -[(log<sub>10</sub>PFU)/day]'''
 +
| '''Viruses'''
 +
| '''Location'''
 +
| '''Temperature &deg;C'''
 +
| '''Decay rate -[(log<sub>10</sub>PFU)/day]'''
 +
| '''Viruses'''
 +
| '''Location'''
 +
| '''Temperature &deg;C'''
 +
| '''Decay rate -[(log<sub>10</sub>PFU)/day]'''
 +
|-
 +
| rowspan = "16" | '''Echovirus 1'''
 +
| rowspan = "3" | Wisconsin
 +
| 4
 +
| ND <sup>a</sup>
 +
| rowspan = "16" | '''MS-2 bacteriophage'''
 +
| rowspan = "3" | Wisconsin
 +
| 4
 +
| 0.020
 +
| rowspan = "16" | '''Poliovirus 1'''
 +
| rowspan = "3" | Wisconsin
 +
| 4
 +
| ND
 +
|-
 +
| 12
 +
| 0.066
 +
| 12
 +
| 0.093
 +
| 12
 +
| 0.060
 +
|-
 +
| 23
 +
| ND
 +
| 23
 +
| 0.244
 +
| 23
 +
| ND
 +
|-
 +
| rowspan = "3" | Arizona
 +
| 4
 +
| ND
 +
| rowspan = "3" | Arizona
 +
| 4
 +
| 0.064
 +
| rowspan = "3" | Arizona
 +
| 4
 +
| ND
 +
|-
 +
| 12
 +
| ND
 +
| 12
 +
| 0.162
 +
| 12
 +
| ND
 +
|-
 +
| 23
 +
| 0.188
 +
| 23
 +
| 0.578
 +
| 23
 +
| 0.357
 +
|-
 +
| rowspan = "3" | North Carolina
 +
| 4
 +
| ND
 +
| rowspan = "3" | North Carolina
 +
| 4
 +
| 0.013
 +
| rowspan = "3" | North Carolina
 +
| 4
 +
| ND
 +
|-
 +
| 12
 +
| 0.180
 +
| 12
 +
| 0.063
 +
| 12
 +
| 0.126
 +
|-
 +
| 23
 +
| ND
 +
| 23
 +
| 0.225
 +
| 23
 +
| ND
 +
|-
 +
| rowspan = "3" | University of Arizona
 +
| 4
 +
| ND
 +
| rowspan = "3" | University of Arizona
 +
| 4
 +
| 0.025
 +
| rowspan = "3" | University of Arizona
 +
| 4
 +
| ND
 +
|-
 +
| 12
 +
| ND
 +
| 12
 +
| 0.040
 +
| 12
 +
| ND
 +
|-
 +
| 23
 +
| 0.628
 +
| 23
 +
| 0.325
 +
| 23
 +
| 0.676
 +
|-
 +
| New York
 +
| 12
 +
| 0.053
 +
| New York
 +
| 12
 +
| 0.036
 +
| New York
 +
| 12
 +
| 0.043
 +
|-
 +
| Texas
 +
| 13
 +
| 0.109
 +
| Texas
 +
| 13
 +
| 0.096
 +
| Texas
 +
| 13
 +
| 0.087
 +
|-
 +
| rowspan = "2" |California
 +
| 17
 +
| 0.091
 +
| rowspan = "2" |California
 +
| 17
 +
| 0.075
 +
| rowspan = "2" |California
 +
| 17
 +
| 0.081
 +
|-
 +
| 18
 +
| 0.151
 +
| 18
 +
| 0.082
 +
| 18
 +
| 0.185
 +
|}
 +
|}
 +
<sup>a</sup>: ND, Not done <br />
 +
('''Yates et al, 1985''')
 +
 
 +
=== Treated Water ===
 +
=== Distribution Systems ===
 +
 
 +
 
  
 
== Pathogen Specific ==
 
== Pathogen Specific ==
=== [[Dose response assessment|Dose response assessment]] ===
+
 
 +
=== Dose Response ===
 +
<!-- === [[Dose response assessment|Dose response models]] === -->
  
 
'''Pathogens with oral data available''' <br />
 
'''Pathogens with oral data available''' <br />
''Francisella tularensis'' <br />
 
''Campylobacter'' (human) <br />
 
''Vibrio cholera'' (human) <br />
 
''Cryptosporidium'' (human) <br />
 
''Escherichia coli'' (human) <br />
 
''Giardia'' (human and animals) <br />
 
''Echovirus'' (human) <br />
 
''Enteroviruses'' <br />
 
''Rhinovirus'' (human) <br />
 
''Endamoeba coli'' (human) <br />
 
enterohemorrhagic ''Escherichia coli''  <br />
 
Shigella species (human) <br />
 
  
== Distribution ==
+
[[Dose response models for Campylobacter|''Campylobacter'' (human)]] <br />
 +
[[Dose response models for Cryptosporidium|''Cryptosporidium'' (human)]] <br />
 +
[[Dose response models for Echovirus|''Echovirus'' (human)]] <br />
 +
[[Dose response models for Entamoeba|''Entamoeba coli'' (human)]] <br />
 +
[[Dose response models for Enteroviruses|''Enteroviruses'']] <br />
 +
[[Dose response models for Escherichia coli|''Escherichia coli'' (human)]] <br />
 +
[[Dose response models for enterohemorrhagic Escherichia coli (EHEC)|enterohemorrhagic ''Escherichia coli'']]  <br />
 +
[[Dose response models for Francisella tularensis|''Francisella tularensis'']] <br />
 +
[[Dose response models for Giardia|''Giardia'' (human and animals)]] <br />
 +
[[Dose response models for Rhinovirus|''Rhinovirus'' (human)]] <br />
 +
[[Dose response models for Shigella|Shigella species (human)]] <br />
 +
[[Dose response models for Vibrio cholera|''Vibrio cholera'' (human)]] <br />
 +
 
 
=== Survival ===
 
=== Survival ===
 +
 
=== Transport ===
 
=== Transport ===
 +
 +
== References ==
 +
 +
Abbaszadegan M, Lechevallier M and Gerba C. (2003) Occurrence of viruses in US groundwaters. Journal AWWA. 95(9): 107-120. [http://wet.asu.edu/JAWWA.pdf Full text]
 +
 +
Berman, D. and Hoff, J.C. (1984) Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine. Appl. Environ. Microbiol. 48: 317-323 [http://aem.asm.org/cgi/reprint/48/2/317 Full text]
 +
 +
Berman, D., Rice, E.W. and Hoff, J.C. (1988) Inactivation of particle-associated coliforms by chlorine and monochloramine. Appl. Environ. Microbiol. 54: 507-512 [http://aem.asm.org/cgi/reprint/54/2/507 Full text]
 +
 +
Borchardt M., Bertz, P., Spencer, S. and Battigelli, D. (2003) Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin. Applied and Environmental Microbiology. 69(2): 1172–1180. [http://aem.asm.org/cgi/reprint/69/2/1172 Full text]
 +
 +
Borchardt M., Bradbury, K., Gotknowitz, M., Cherry, J. and Parker, B. (2007) Human Enteric Viruses in Groundwater from a Confined Bedrock Aquifer. Environmental Science & Technology. 41, 6606-6612. [http://diyhpl.us/~bryan/papers2/bio/Human%20enteric%20viruses%20in%20groundwater%20from%20a%20confined%20bedrock%20aquifer.pdf Full text]
 +
 +
Borchardt M., Haas N and Hunt R. (2004) Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. Applied and Environmental Microbiology. 70(10): 5937-5946. [http://aem.asm.org/cgi/reprint/70/10/5937 Full text]
 +
 +
Bradbury K, Borchardt M, Gotkowitz M and Spencer S. (2010) Human viruses as tracers of wastewater pathways into deep municipal wells. Final report to the Wisconsin Department of Natural Resources. [http://wisconsingeologicalsurvey.org/wofrs/WOFR2010-04a.pdf Full text]
 +
 +
Brown, J., Sobsey, M.,and Proum, S. Use of Ceramic Water Filters in Cambodia.; World Bank: Washington, DC, August, 2007. [http://media.greennexxus.com/wasrag/Products/Ceramic%20Filter%20Performance%20Review-Brown-2007.pdf Full text]
 +
 +
Campbell, I., Tzipori, S., Hutchison, G. and Angus, K.W. (1982) Effect of disinfectants on survival of Cryptosporidium oocysts. Vet. Rec. 111:414-415
 +
 +
Carson, L.A., Petersen, N.J., Favero, M.S. and Aguero, S.M. (1978) Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl. Environ. Microbiol. 36: 839-846 [http://aem.asm.org/cgi/reprint/36/6/839 Full text]
 +
 +
Churn, C.C., Boardman, C.D. and Bates, R.C. (1984) The inactivation kinetics of H-1 parvovirus by chlorine. Water Res. 18: 195-203 [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V73-48CFR98-CS-1&_cdi=5831&_user=1111158&_pii=0043135484900691&_origin=&_coverDate=12%2F31%2F1984&_sk=999819997&view=c&wchp=dGLzVzz-zSkWb&md5=d8c40b9cb24a551387ace1461029a745&ie=/sdarticle.pdf Full text]
 +
 +
DeBorde D, Woessner W, Lauerman B and Ball P. (1998) Virus occurrence and transport in a school septic system and unconfined aquifer. Ground Water. 36(5): 825-834. [http://info.ngwa.org/GWOL/pdf/982564301.PDF Full text]
 +
 +
de Jonckheere, J and van de Voorde, H. (1976) Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Appl. Environ. Microbiol. 31: 294-297 [http://aem.asm.org/cgi/reprint/31/2/294 Full text]
 +
 +
Elliott, M. A.; Stauber, C. E.; Koksal, F.; DiGiano, F. A.; Sobsey, M. D. Reduction of E. coli, Echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res., In Press. [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V73-4RNR6VS-3-H&_cdi=5831&_user=1111158&_pii=S0043135408000341&_origin=&_coverDate=05%2F31%2F2008&_sk=999579989&view=c&wchp=dGLbVlz-zSkWl&md5=3ce8d12d60fe5a030d10dac12c929b35&ie=/sdarticle.pdf Full text]
 +
 +
[http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=209866 EPA Exposure Factors Handbook]
 +
 +
Fujioka, R.S., Dow, M.A. and Yoneyama, B.S. (1986) Comparative disinfection of indicator bacteria and poliovirus by chlorine dioxide. Water Sci. Tech. vol. 18 [http://www.iwaponline.com/wst/01810/wst018100125.htm Abstract]
 +
 +
Grabow, W.O.K., Gauss-Muller, V., Prozesky, O.W. and Deinhardt, F. (1983) Inactivation of Hepatitis A virus and indicator organisms in water by free chlorine residuals. Appl. Environ. Microbiol. 46: 619-624 [http://aem.asm.org/cgi/reprint/46/3/619 Full text]
 +
 +
Haas, C.N., Keralius, M.G., Brncich, D.M., and Zapkin, M.A. (1986) Alteration of chemical and disinfectant properties of hypochlorite by sodium, potassium, and lithium. Environ. Sci. Technol. 20: 822-826 [http://pubs.acs.org/doi/pdf/10.1021/es00150a011 Full text]
 +
 +
Harakeh, M. and Butler, M.J. (1984) Inactivation of human rotavirus, SA11 and other enteric viruses in effluent by disinfectants. J. Hyg. Camb. 93: 157-163 [http://journals.cambridge.org/action/displayAbstract;jsessionid=373EE284C88A6F1695E6BA28BBCBC654.tomcat1?fromPage=online&aid=5833588 Abstract]
 +
 +
Hibler, C.P., Hancock, C.M., Perger, L.M., Wegrzn, J.G. and Swabby, K.D. (1987) Inactivation of Giardia cysts with chlorine at 0.5 to 5.0 &deg;C. Amer. Water Works Association. Res. Foundation. Denver, CO
 +
 +
Hijnen, W. A.; Schijven, J. F.; Bonne, P.; Visser, A.; Medema, G. J. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci. Technol. 2004, 50 (1), 147–54. [http://www.geol.lsu.edu/blanford/NATORBF/11%20Microbe%20Removal/3%20Virus%20Specific%20Removal%20by%20RBF/Hinjen%20W%20et%20al_Water%20Sci%20and%20Tech_2004.pdf Full text]
 +
 +
Jarrol, E.L., Bingham, A.K. and Meyer, E.A. (1981) Effect of chlorine on Giardia lamblia cyst viability. Appl. Environ. Microbiol. 41: 483-487 [http://aem.asm.org/cgi/reprint/41/2/483 Full text]
 +
 +
Kahn H. and Stralka K. (2009) Estimated daily average per capita water ingestion by child and adult age categories based on USDA's 1994-1996 and 1998 continuing survey of food intakes by individuals. Journal of Exposure Science and Environmental Epidemiology 19, 396-404 [http://wiki.camra.msu.edu/images/1/14/Kahn_2009.pdf Full text]
 +
 +
Kuchta, J.M., States, S.J., McGlauchlin, J.E., Overmeyer, J.H., Wadowsky, R.M., Mcnamara, A.M., Wolford, R.S., and Yee, R.B. (1985) Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl. Environ. Microbiol. 50: 21-26 [http://aem.asm.org/cgi/reprint/50/1/21 Full text]
 +
 +
Lantagne, D. Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter - Report 1: Intrinsic Effectiveness; Alethia Environmental: Alston, MA, 2001 [http://www.watersanitationhygiene.org/References/EH_KEY_REFERENCES/WATER/Water%20Treatment/POU%20Water%20Treatment/POU%20Ceramic%20Filters/Investigation%20into%20the%20PFP%20Ceramic%20Filter%20%28CDC%29.pdf Full text]
 +
 +
Leahy, J.G., Rubin, A.J. and Sproul, O.J. (1987) Inactivation of Giardia muris cysts by free chlorine. Appl. Environ. Microbiol. 53: 1448-1453 [http://aem.asm.org/cgi/reprint/53/7/1448 Full text]
 +
 +
Locas A, Barthe C, Margolin A, and Payment P. (2008) Groundwater microbiological quality in Canadian drinking water municipal wells. Can. J. Microbiol. 54: 472-478. [http://www.nrcresearchpress.com/doi/pdf/10.1139/W08-028 Full text]
 +
 +
Locas A, Barthe C, Barbeau B, Carriere A, and Payment P. (2007) Virus occurrence in municipal groundwater sources in Quebec, Canada. Can. J. Microbiol. 53: 688-694. [http://www.nrcresearchpress.com/doi/pdf/10.1139/W07-034 Full text]
 +
 +
Pelletier, P.A. and Du Moulin, G.C. (1987) Mycobacteria in public water supplies: comparative resistance to chlorine. In: Emerging Issues in Effluent Disinfection Workshop, Water Pollution Control Federation, Washington, D.C.
 +
 +
Powell K, Taylor R, Cronin A, Barrett M, Pedley S, Sellwood J, Trowsdale S and Lerner D. (2003) Microbial contamination of two urban sandstone aquifers in the UK. Water Research. 37: 339-352. [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V73-4712HF7-2-C&_cdi=5831&_user=1111158&_pii=S0043135402002804&_origin=&_coverDate=01%2F31%2F2003&_sk=999629997&view=c&wchp=dGLbVzz-zSkzk&md5=2ccec28fd8dca98fa9178af334d52ff7&ie=/sdarticle.pdf Full text]
 +
 +
Rubin, A.J. (1988) Factors affecting the inactivation of Giardia cysts by monochloramine and comparison with other disinfectants. In: Proceedings: Conference on current research in drinking water treatment. U.S. Environmental Protection Agency, EPA/600/9-88/004, Cincinnati, OH, 224-229
 +
 +
Scarpino, P.V. (1984) Effect of particulates on disinfection of enteroviruses in water by chloramines. EPA/2-84-094, U.S. Environmental Protection Agency, Cincinnati, OH. 76p.
 +
 +
Sobsey, M. D. (1989) Inactivation of health-related microorganisms in water by disinfection process. Water Science & Technology. 21(3): 179-195. [http://www.iwaponline.com/wst/02103/wst021030179.htm Abstract]
 +
 +
Sobsey, M. D. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply; World Health Organization: Geneva, 2002. [http://www.bvsde.paho.org/bvsacd/who/sobs.pdf Full text]
 +
 +
Sobsey, M.D., Fuji, T. and Shields, P.A. (1988) Inactivation of hepatitis A virus and model viruses in water by free chlorine and monochloramine. In: Proceddings of the international conference for water and wastewater microbiology. International association for water pollution research and control, Pergamon Press, New York.
 +
 +
Sobsey, M., Stauber, C., Casanova, L., Brown, J. and Elliott, M. (2008) Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environmental Science & Technology 42, 4261-4267. [http://pubs.acs.org/doi/pdf/10.1021/es702746n Full text] <br />
 +
 +
Vaughn, J.M., Chen, Y.S. and Thomas, M.Z. (1986) Inactivation of human and simian rotaviruses by chlorine. Appl. Environ. Microbiol. 51: 391-394 [http://aem.asm.org/cgi/reprint/51/2/391 Full text]
 +
 +
Vaughn J, Landry E, Baranosky L, Beckwith C, Dahl M, and Delihas N. (1978) Survey of human virus occurrence in wastewater-recharged groundwater on Long Island. Applied and Environmental Microbiology. 36(1): 47-51. [http://aem.asm.org/cgi/reprint/36/1/47 Full text]
 +
 +
Yates M, Gerba C, and Kelley L. (1985) Virus persistence in groundwater. Applied and Environmental Microbiology. 49(4): 778-781. [http://aem.asm.org/cgi/reprint/49/4/778 Full text]

Latest revision as of 15:16, 18 August 2011

Introduction

The Drinking Water page is intended to serve as a means of providing the relevant information to the users who wish to perform a QMRA on drinking water

Tap Water Consumption

Table 1: Estimated Combined Directa & Indirectb Community Water Ingestion via EPA Exposure Factors Handbook
Population Age Number of Subjects Mean (90% CI) c (mL/person/day) 95th (90% BI) d (mL/person/day)
United States People Birth to <1 month 91 184 (117-251) 839 (638-859)
1 to <3 months 253 227 (180-274) 896 (878-1022)
3 to <6 months 428 362 (322-401) 1056 (1043-1170)
6 to <12 months 714 360 (328-392) 1055 (1008-1254)
1 to <2 years 1040 271 (253-289) 837 (754-925)
2 to <3 years 1056 317 (298-337) 877 (828-939)
3 to <6 years 4391 380 (365-394) 1078 (1053-1109)
6 to <11 years 1670 447 (417-476) 1235 (1148-1317)
11 to <16 years 1005 606 (562-651) 1727 (1615-1780)
16 to <18 years 363 731 (633-828) 1983 (1843-2128)
18 to <21 years 389 826 (746-906) 2540 (1908-2934)
>21 years 9207 1104 (1074-1134) 2811 (2732-2924)
>65 years 2170 1127 (1073-1180) 2551 (2500-2637)
All ages 20,607 926 (903-949) 2544 (2500-2584)

a Direct water: water ingested directly as a beverage.
b Indirect water: water added in preparation of food or beverages.
c 90% CI: 90% confidence interval about the estimated means.
d 90% BI: 90% bootstrap interval about the estimated percentiles.
Source of data: 1994-1996 and 1998 USDA Continuing Survey of Food Intakes by Individuals (CSFII).
(Kahn H.D. and Stralka K., 2009)

Water Distribution Fate and Transport

Treatment

Engineering Controls

Disinfection

Chlorine

Table 1: Inactivation of Health-related Microbes in Water by Free Chlorine
Microbe Water Cl2 Residual (mg/l) Temp(°C) Time(min) Reduction(%) Estimate Cta References
Bacteria
pH = 7.0
E. coli BDFb, < 7umc 0.5 5 30 NDd 0.9 Berman et al, 1988
E. coli BDF, > 7ume 0.5 5 30 ND 2.7 Berman et al, 1988
M. chelonei BDF 0.3 25 60 40 >>60 Carson et al, 1978
M. chelonei 0.7 25 60 99.95 46 Carson et al, 1978
M. chelonei BDF 1 ? 60 96 ca.80 Pelletier and Du Moulin, 1987
M. fortuitum BDF 0.15 ? 60 0 >720 Pelletier and Du Moulin, 1987
M. fortuitum BDF 1 ? 30 99.4 ca.28 Pelletier and Du Moulin, 1987
M. intracellulare BDF 0.15 ? 60 70 >>480 Pelletier and Du Moulin, 1987
pH > 7.0
E. coli BDF 0.1 23 3.5 90 0.6 Hass et al, 1986
E. coli BDF 0.1M KNO3 0.1 23 0.8 90 0.15 Hass et al, 1986
Microbe Water Cl2 Residual (mg/l) Temp(°C) Time(min) Reduction(%) Estimate Cta References
Viruses
pH <= 7.0
Parvo- H-1 PBS 0.2 20 6 99.9 0.53 Churn et al,1984
Parvo- H-1 PBS 0.2 10 11 99.9 0.85 Churn et al,1984
Hepatitis A BDF 0.42-0.06 25 0.7 99.99 ca. 3.0 Grabow et al, 1983
Hepatitis A BDF 0.5 5 6.5 99.99 ca. 1.8 Sobsey et al, 1988
Coliphage MS2 BDF 0.5 5 1.2 99.99 ca. 0.25 Sobsey et al, 1988
pH > 7.0
SA11, disp. BDF ca. 0.5 5 1.1-1.65 99 0.63 Berman and Hoff, 1984
SA11, cell ass. BDF ca. 0.5 5 2.4-4.4 99 1.8 Berman and Hoff, 1984
Human rota effluent 1.1 15 15 40 >>15 Harekah and Butler, 1984
Human rota effluent 2.2 15 10 60 >>15 Harekah and Butler, 1984
Rota, SA11 BDF 0.1 4 0.5 99.9 0.03 Vaughn et al, 1986
Rota, Wa BDF 0.1 4 0.65 99.9 0.03 Vaughn et al, 1986
Rota, SA11 BDF 0.4-0.28 25 1.1 99.99 ca. 4.0 Grabow et al, 1983
Hepatitis A BDF 0.4-0.28 25 2.5 99.99 ca. 5.5 Grabow et al, 1983
Hepatitis A BDF 0.5 5 49.6 99.99 ca. 12.3 Sobsey et al, 1988
Coliphage MS2 BDF 0.5 5 26.5 99.99 ca. 6.9 Sobsey et al, 1988
Microbe Water Cl2 Residual (mg/l) Temp(°C) Time(min) Reduction(%) Estimate Cta References
Protozoan Cysts
pH <= 7.0
G. lamblia BDF 1.0-4.0 5 3.0-32 90 90-170 Jarroll et al, 1981
G. lamblia BDF 1.5 25 47 99 <15 Jarroll et al, 1981
G. lamblia BDF 2.5 5 19-26 90 ca. 120 Rice et al, 1982
G. lamblia BDF 0.2-3.0 5 99 54-87 Hibler et al, 1987
G. lamblia BDF 0.2-3.0 5 99 83-133 Hibler et al, 1987
G. muris BDF 2.5 5 30 90 >150 Hibler et al, 1987
G. muris BDF 23.8-78.5 f 5 5.7-42.6 99 449-1012 Leahey et al, 1987
G. muris BDF 2.8-7.1 g 25 3.6-16 99 25.5-44.8 Leahey et al, 1987
G. muris BDF 4.4 25 16.3 99 71 Leahey et al, 1987
N. gruberi BDF 2.64 25 2.8 99 7.3 Rubin et al, 1983
N. gruberi BDF 2.2 25 5.2 99 11.4 Rubin et al, 1983
Cryptosporidium gut homog. in PBS 30,000 f 4 18 hr <95 >>18 hrs Campbell et al, 1982
pH > 7.0
G. lamblia BDF 0.2-3.0 5 99 119-192 Hibler et al, 1987
G. muris BDF 2.5 5 48 90 >150 Rice et al, 1982
G. muris BDF 11.1 25 15.6 99 177 Leahey et al, 1987
Naegleria(2 species) 0.5-1.0 25 1-3 hr 99.99 12-18 de Jonckheere and van de voorde, 1976
Acanthamoeba(2 species) 4.0-8.0 25 24 hr 99.99 960-7200 de Jonckheere and van de voorde, 1976
N. gruberi BDF 15.4 25 15.4 99 177 Rubin et al, 1983

a: product of disinfectant concentration (C) in mg/l and contact time (t) in minutes for 99% inactivation
b: BDF: buffered demand free
c: <7um: with <7um particles
d: ND: Not done or no data
e: >7um: with >7um particles
f: Not to be used for Drinking water due to residual level greater than 2 mg/L as stipulated by EPA
g: Not recommended for Drinking water due to residual range being greater than 2 mg/L as stipulated by EPA
(Sobsey, 1989)


Table 2: Inactivation of Health-related Microbes in Water by Chloramines
Microbe Water Cl2 Residual (mg/l) Temp(°C) Time(min) Reduction(%) Estimate Cta References
Bacteria
pH <= 7.0
S. typhimurium & S. sonnei 1% sewage 0.4-1.5 20 NDb 90 8.5 Snead et al, 1980
M. fortuitum BDFc 3.25 20 50 90 2667 Engelbrecht et al, 1977
pH > 7.0
E. coli BDF 1.9-2.2 5 51-59 99 113 Scarpino, 1984
S. typhimurium & S. sonnei 1% sewage 0.4-1.5 20 ND 90 40 Snead et al, 1980
Viruses
pH > 7.0
Polio 1 BDF 5-22 5 170 99 1420 Scarpino, 1984
Polio 1 1° effl. 1-10 25 60-308 99 ca. 345 Fujioka et al, 1983
Hepatitis A BDF 10 5 117 99.99 ca. 592 Sobsey et al, 1988
Coliphage MS2 BDF 10 5 >>60 ca. 2100 Sobsey et al, 1988
Rotavirus SA11 dispersed BDF 10 5 366-402 99 4034 Berman and Hoff, 1984
Rotavirus SA11 cell-assoc. BDF 10 5 570-636 99 6124 Berman and Hoff, 1984
Protozoan Cysts
pH <= 7.0
G. muris BDF 1.5-2.6 3 188-296 99 430-580 Meyer, 1982
G. muris BDF 6.35 5 220 99 ca. 1400 Rubin, 1988
G. muris BDF 1.5-30 15 99 ca. 1000 Rubin, 1988
pH > 7.0
G. muris BDF 1.5-30 15 99 ca. 600 Rubin, 1988

a: product of disinfectant concentration (C) in mg/l and contact time (t) in minutes for 99% inactivation
b:ND: Not done or no data
c: BDF: buffered demand free
(Sobsey, 1989)

UV

Filtration

Table 3. Reduction Value (log10) by Filtration
Microbe Reduction Value (log10) Reference
Minimum a Maximum b
Porous ceramic filtration
Total Coliform 2 Lantagne 2001
E. coli 2 Brown 2007
Klebsiella terrigena 6 Sobsey 2002
Polioviruses 0.5 4 Sobsey 2002
Rotaviruses 0.5 4 Sobsey 2002
Cryptosporidium parvum 4 6 Lantagne 2001
Giardia lamblia 4 6 Lantagne 2001
Biosand filtration
E. coli 1 3 Hijnen 2004, Elliott 2008
Clostridia 1 3 Hijnen 2004, Elliott 2008
Echovirus 12 0.5 3 Hijnen 2004, Elliott 2008
MS2-bacteriophages 0.5 1.5 Hijnen 2004, Elliott 2008
PRD1-bacteriophages 0.5 2 Hijnen 2004, Elliott 2008
Cryptosporidium parvum 2 5 Hijnen 2004
Giardia lamblia 2 5 Hijnen 2004

a: expected in actual field practice when done by relatively unskilled persons who apply the treatment to waters of varying quality and where there are minimum facilities or supporting instruments;
b: by skilled operators who are supported with instrumentation and other tools to maintain the highest level of performance in waters of predictable and unchanging quality.

Pathogen Occurrence in Water Sources

Sewage

Surface Water

Ground Water

Table 1. Pathogens in Groundwater
Pathogen Location Presence/Absence Concentration a Note References
Total Cultural Enteric Viruses
(BGM b)
Missoula, MT
Eight Wells from Unconfined Aquifer
n = 7
 % positive = 0
Min: < 0.67
Max: < 4.05
Avg: < 1.74
Std: < 1.43
Unit: MPN/1000L
Water samples from wells beneath and adjacent to the
drainfield of the septic tanks were collected.
Please see the virus data in septic tanks in Table Y.
DeBorde et al, 1998
Total Cultural Enteric Viruses
(BGM b)
Nottingham and Birmingham, UK
Two Sandstone Aquifers
n = 107
 % positive = 10
Detection limit: 1000
Min: 5000
Max: 10,000
Avg: 1382
Std: 1670
Unit: PFU/1000L
Only two quantifiable samples were found. Powell et al, 2003
Six virus groups c
(qRT-PCR)
Madison, WI
Six municipal water-supply wells from sandstone aquifer
n = 147
 % positive = 47
Max: 6.27
Avg: 0.65
Unit: Gene Copies/L
Virus levels in Lake Mendota and sewage influent were also analyzed. Bradbury et al, 2010
Five virus groups d
(RT-PCR)
La Crosse, WI
Six drinking-water supply wells
n = 48
 % positive = 50
Occurrence of virus in river samples was also analyzed. Borchardt et al, 2004
Five virus groups d
(RT-PCR)
Madison, WI
Three wells from confined bedrock aquifer
n = 30
 % positive = 23
One well is located in a suburban area from which no positive sample was found.
The other two wells located in highly urbanized areas from which 7 positives were found.
Borchardt et al, 2007
Five virus groups d
(RT-PCR)
Wisconsin
Fifty private household wells
n = 194
 % positive = 2.6
All samples were negative for culturable viruses. Borchardt et al, 2003
Four virus groups e
(RT-PCR)
United States
n = 448
 % positive = 31.5
Groundwater were collected from 448 sites in 35 states in US.
 % positive for each specific virus was also reported.
Abbaszadegan et al, 2003
Total Cultural Enteric Viruses
(BGM b)
United States
n = 442
 % positive = 4.8
Min: 0.9
Max: 18.6
Unit: MPN/1000L
Total Cultural Enteric Viruses
(MA-104)
Quebec, Canada
Twelve municipalities
n = 113
 % positive = 8
Min: 3
Max: 589
Unit: MPN/1000L
Municipalities were divided into 3 groups: group A with no known microbial contamination;
group B with groundwater sporadically contaminated by total coliform;
group C were historic and continuous contaminated by total coliforms and fecal coliforms.
No virus was found in A. Virus was found in one sample in B and 8 samples in C.
Locas et al, 2007
Total Cultural Enteric Viruses
(BGM b)
Quebec, Ontario, and Alberta of Canada
25 sites
n = 130
 % positive = 0.8
10 MPN/1000L One sample was positive in Quebec site.
None was positive in other two sites.
Locas et al, 2008
Total Cultural Enteric Viruses
(BGM b)
Long Island
Three wells
n = 30
 % positive = 20
Min: 343
Max: 2800
Avg: 1030
Std: 898
Unit: PFU/1000L
The recovery of viruses from groundwater established the ability of virus particles to penetrate these shallower basins (18 to 34 feet) from wastewater treatment plant. Vaughn et al, 1978

a: All averages included negative samples reported at detection limit
b: Cell culture line
c: Enteroviruses, adenoviruses, rotavirus, hepatitis A virus (HAV), and norovirus genogroups I and II
d: Enteroviruses, rotavirus, hepatitis A virus, and norovirus genogroups I and II
e: Enteroviruses, rotavirus, hepatitis A virus, and norwalk virus


Table 2. Decay rates of viruses in groundwater
Viruses Location Temperature °C Decay rate -[(log10PFU)/day] Viruses Location Temperature °C Decay rate -[(log10PFU)/day] Viruses Location Temperature °C Decay rate -[(log10PFU)/day]
Echovirus 1 Wisconsin 4 ND a MS-2 bacteriophage Wisconsin 4 0.020 Poliovirus 1 Wisconsin 4 ND
12 0.066 12 0.093 12 0.060
23 ND 23 0.244 23 ND
Arizona 4 ND Arizona 4 0.064 Arizona 4 ND
12 ND 12 0.162 12 ND
23 0.188 23 0.578 23 0.357
North Carolina 4 ND North Carolina 4 0.013 North Carolina 4 ND
12 0.180 12 0.063 12 0.126
23 ND 23 0.225 23 ND
University of Arizona 4 ND University of Arizona 4 0.025 University of Arizona 4 ND
12 ND 12 0.040 12 ND
23 0.628 23 0.325 23 0.676
New York 12 0.053 New York 12 0.036 New York 12 0.043
Texas 13 0.109 Texas 13 0.096 Texas 13 0.087
California 17 0.091 California 17 0.075 California 17 0.081
18 0.151 18 0.082 18 0.185

a: ND, Not done
(Yates et al, 1985)

Treated Water

Distribution Systems

Pathogen Specific

Dose Response

Pathogens with oral data available

Campylobacter (human)
Cryptosporidium (human)
Echovirus (human)
Entamoeba coli (human)
Enteroviruses
Escherichia coli (human)
enterohemorrhagic Escherichia coli
Francisella tularensis
Giardia (human and animals)
Rhinovirus (human)
Shigella species (human)
Vibrio cholera (human)

Survival

Transport

References

Abbaszadegan M, Lechevallier M and Gerba C. (2003) Occurrence of viruses in US groundwaters. Journal AWWA. 95(9): 107-120. Full text

Berman, D. and Hoff, J.C. (1984) Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine. Appl. Environ. Microbiol. 48: 317-323 Full text

Berman, D., Rice, E.W. and Hoff, J.C. (1988) Inactivation of particle-associated coliforms by chlorine and monochloramine. Appl. Environ. Microbiol. 54: 507-512 Full text

Borchardt M., Bertz, P., Spencer, S. and Battigelli, D. (2003) Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin. Applied and Environmental Microbiology. 69(2): 1172–1180. Full text

Borchardt M., Bradbury, K., Gotknowitz, M., Cherry, J. and Parker, B. (2007) Human Enteric Viruses in Groundwater from a Confined Bedrock Aquifer. Environmental Science & Technology. 41, 6606-6612. Full text

Borchardt M., Haas N and Hunt R. (2004) Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions. Applied and Environmental Microbiology. 70(10): 5937-5946. Full text

Bradbury K, Borchardt M, Gotkowitz M and Spencer S. (2010) Human viruses as tracers of wastewater pathways into deep municipal wells. Final report to the Wisconsin Department of Natural Resources. Full text

Brown, J., Sobsey, M.,and Proum, S. Use of Ceramic Water Filters in Cambodia.; World Bank: Washington, DC, August, 2007. Full text

Campbell, I., Tzipori, S., Hutchison, G. and Angus, K.W. (1982) Effect of disinfectants on survival of Cryptosporidium oocysts. Vet. Rec. 111:414-415

Carson, L.A., Petersen, N.J., Favero, M.S. and Aguero, S.M. (1978) Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl. Environ. Microbiol. 36: 839-846 Full text

Churn, C.C., Boardman, C.D. and Bates, R.C. (1984) The inactivation kinetics of H-1 parvovirus by chlorine. Water Res. 18: 195-203 Full text

DeBorde D, Woessner W, Lauerman B and Ball P. (1998) Virus occurrence and transport in a school septic system and unconfined aquifer. Ground Water. 36(5): 825-834. Full text

de Jonckheere, J and van de Voorde, H. (1976) Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Appl. Environ. Microbiol. 31: 294-297 Full text

Elliott, M. A.; Stauber, C. E.; Koksal, F.; DiGiano, F. A.; Sobsey, M. D. Reduction of E. coli, Echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res., In Press. Full text

EPA Exposure Factors Handbook

Fujioka, R.S., Dow, M.A. and Yoneyama, B.S. (1986) Comparative disinfection of indicator bacteria and poliovirus by chlorine dioxide. Water Sci. Tech. vol. 18 Abstract

Grabow, W.O.K., Gauss-Muller, V., Prozesky, O.W. and Deinhardt, F. (1983) Inactivation of Hepatitis A virus and indicator organisms in water by free chlorine residuals. Appl. Environ. Microbiol. 46: 619-624 Full text

Haas, C.N., Keralius, M.G., Brncich, D.M., and Zapkin, M.A. (1986) Alteration of chemical and disinfectant properties of hypochlorite by sodium, potassium, and lithium. Environ. Sci. Technol. 20: 822-826 Full text

Harakeh, M. and Butler, M.J. (1984) Inactivation of human rotavirus, SA11 and other enteric viruses in effluent by disinfectants. J. Hyg. Camb. 93: 157-163 Abstract

Hibler, C.P., Hancock, C.M., Perger, L.M., Wegrzn, J.G. and Swabby, K.D. (1987) Inactivation of Giardia cysts with chlorine at 0.5 to 5.0 °C. Amer. Water Works Association. Res. Foundation. Denver, CO

Hijnen, W. A.; Schijven, J. F.; Bonne, P.; Visser, A.; Medema, G. J. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci. Technol. 2004, 50 (1), 147–54. Full text

Jarrol, E.L., Bingham, A.K. and Meyer, E.A. (1981) Effect of chlorine on Giardia lamblia cyst viability. Appl. Environ. Microbiol. 41: 483-487 Full text

Kahn H. and Stralka K. (2009) Estimated daily average per capita water ingestion by child and adult age categories based on USDA's 1994-1996 and 1998 continuing survey of food intakes by individuals. Journal of Exposure Science and Environmental Epidemiology 19, 396-404 Full text

Kuchta, J.M., States, S.J., McGlauchlin, J.E., Overmeyer, J.H., Wadowsky, R.M., Mcnamara, A.M., Wolford, R.S., and Yee, R.B. (1985) Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl. Environ. Microbiol. 50: 21-26 Full text

Lantagne, D. Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter - Report 1: Intrinsic Effectiveness; Alethia Environmental: Alston, MA, 2001 Full text

Leahy, J.G., Rubin, A.J. and Sproul, O.J. (1987) Inactivation of Giardia muris cysts by free chlorine. Appl. Environ. Microbiol. 53: 1448-1453 Full text

Locas A, Barthe C, Margolin A, and Payment P. (2008) Groundwater microbiological quality in Canadian drinking water municipal wells. Can. J. Microbiol. 54: 472-478. Full text

Locas A, Barthe C, Barbeau B, Carriere A, and Payment P. (2007) Virus occurrence in municipal groundwater sources in Quebec, Canada. Can. J. Microbiol. 53: 688-694. Full text

Pelletier, P.A. and Du Moulin, G.C. (1987) Mycobacteria in public water supplies: comparative resistance to chlorine. In: Emerging Issues in Effluent Disinfection Workshop, Water Pollution Control Federation, Washington, D.C.

Powell K, Taylor R, Cronin A, Barrett M, Pedley S, Sellwood J, Trowsdale S and Lerner D. (2003) Microbial contamination of two urban sandstone aquifers in the UK. Water Research. 37: 339-352. Full text

Rubin, A.J. (1988) Factors affecting the inactivation of Giardia cysts by monochloramine and comparison with other disinfectants. In: Proceedings: Conference on current research in drinking water treatment. U.S. Environmental Protection Agency, EPA/600/9-88/004, Cincinnati, OH, 224-229

Scarpino, P.V. (1984) Effect of particulates on disinfection of enteroviruses in water by chloramines. EPA/2-84-094, U.S. Environmental Protection Agency, Cincinnati, OH. 76p.

Sobsey, M. D. (1989) Inactivation of health-related microorganisms in water by disinfection process. Water Science & Technology. 21(3): 179-195. Abstract

Sobsey, M. D. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply; World Health Organization: Geneva, 2002. Full text

Sobsey, M.D., Fuji, T. and Shields, P.A. (1988) Inactivation of hepatitis A virus and model viruses in water by free chlorine and monochloramine. In: Proceddings of the international conference for water and wastewater microbiology. International association for water pollution research and control, Pergamon Press, New York.

Sobsey, M., Stauber, C., Casanova, L., Brown, J. and Elliott, M. (2008) Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environmental Science & Technology 42, 4261-4267. Full text

Vaughn, J.M., Chen, Y.S. and Thomas, M.Z. (1986) Inactivation of human and simian rotaviruses by chlorine. Appl. Environ. Microbiol. 51: 391-394 Full text

Vaughn J, Landry E, Baranosky L, Beckwith C, Dahl M, and Delihas N. (1978) Survey of human virus occurrence in wastewater-recharged groundwater on Long Island. Applied and Environmental Microbiology. 36(1): 47-51. Full text

Yates M, Gerba C, and Kelley L. (1985) Virus persistence in groundwater. Applied and Environmental Microbiology. 49(4): 778-781. Full text